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Some logarithmic lattice sums 
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Department of Mathematical and Computing Sciences, University of Surrey, Guildford, Surrey 
GU2 5XH. UK 

Received 16 February 1995 

Abstract In this paper we consider cerrain lattice Sums which arise when a system of 
line charges set in a compensating jelly of opposite charge interact via the two-dimensional 
logarithmic potential. A IaItice-limit discontinuity phenomenon. similar U) that discovered by 
Bonvein et a1 in the three-dimensional case, is explored and a high-precision asymptotic method 
is described for the numerical computation of two-dimensional lattice limits. 

1. Introduction 

In two recent papers (Borwein er al 1988, 1989), hereafter referred to as A and B, some 
problems involving the calculation of certain limits of lattice sums were considered. These 
‘lattice limits’ arose originally from the Wigner (1934) model of a metal in which an electron 
gas is bathed in a compensating ‘jelly’ of positive charge, the whole being electrically 
neutral. For a given infinitely extended lattice of electrons a quantity of interest is the 
energy of one electron in the electrostatic field of the others and the jelly. 

Suppose that the electrons are placed at the lattice points (m, n ,  p ) .  The interaction 
energy of the electron at the origin is (in suitable units) 

U = C’(m2 + n2 + p 2 ) - i  - (xz + yz  + zz)-i dx dy dz (1) 

where the summation is over all integer triples (m. n ,  p ) ,  the prime denoting the omission 
of (O,O,O), and the integral is taken over all space. Unfortunately, the evaluation of U is 
made difficult by the fact that both the sum and the integral are divergent! 

The ’classical’ method of evaluation of U -  (Coldwell-Horsfall and Maradudin 1960, 
Bonsall and Maradndin 1977) uses mathematically dubious transformations, but in the spirit 
of renormalization, it yields finite results. The rigorous approach of Borwein et nl in A and 
B arose from the observation that the multiple series 

s 

~ ( s )  = Y ( m 2  + n2 + p2)-’ 

is convergent for Res z 4 and that the value of (1) is obtained from the analytic continuation 
of F ( s )  into the region Res < i .  Thus not only were the results of Coldwell-Horsfall and 
Maradudin reproduced in a relatively simple manner, but also an intriguing discontinuity 
was discovered, namely that U and 
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were unequal. Physically, two different limiting processes are involved. In (1) the law of 
electrostatic interaction is the Coulomb inverse square law, and the limiting process is that 
of extending a finite lattice to infinity in all directions. However, (2) uses an inverse sth 
power law and an interaction energy is derived in the limiting case of this law becoming the 
Coulomb law, i.e. s + $. It was pointed out in B that, despite this type of discontinuity, 
the relative stability of lattices of different geometries remains the same whichever limiting 
process is used, but energy separations differ. 

The two-dimensional version of (l), 

V = C’(m2 + n2)-’12 - /(x2 + y2)-’12 dx dy 

V ( s )  = X’(m2 + n2)-,‘ -:/(.x2 + y2)” dx dy 

(3) 

has been used by Bonsall and Maradudin (1977) in energy calculations for two-dimensional 
crystals. However, as shown in A, the quantity 

(4) 

is continuous at s = 4. An interesting question, therefore, is whether there is a two- 
dimensional lattice sum with the discontinuity property noted for (2). In this paper we 
answer this question in the affirmative and give some further calculations of lattice limits. 
Briefly, the discontinuity is found if account is taken of the fact for a two-dimensional 
lattice of line charges, the correct potential to use is the logarithmic potential rather than 
the inverse-distance potential, i.e. we need to use the appropriate Green function for the 
two-dimensional Laplace equation. 

2. The logarithmic lattice limit 

An essential ingredient in the evaluation of (2) is the interpretation of U as a suitable limit. 
Preserving electrical neutrality at all stages, a possible definition of the interaction energy 
is 

U = lim ~ ~ ( 1 / 2 )  
N-rW 

where 

In the two-dimensional case define, for Res > 0, 

N+I/2 - /N+112 1 
((ax2 + 2bxy + cy2)” - 1) dr dy ) 

-(N+112) -(N+1/2) 
N I  A [  2 (nm2+2bmn +cn2)-’ 

m=-Nn=-N 

N+1/2 - /N+“2 / 
(OX2 + 2bxy + cy2)-’ dx dy + 1 

-(N+ll2) -(N+l/Z) 
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where a t 0 and b2 - ac < 0, to ensure the positive definiteness of the quadratic 
denominators. Then both the double series and integral in (5) and (6) are divergent as 
N + bo for 0 < Res < 1. Also, 

N N ,  

UN@) = lim = - In(am2 + 2bmn + cn') 
me-N n=-N s+o+ 

N+I/Z 

+ / ln(ux2 + Zbny + cy2) dx dy 
-(N+l/Z) 

-(N+I/2) 

(7) 

and when a = 1, b = 0, c = 1 we recover the physical line-charge interaction energy as 
N + b o .  

Consider first the existence and evaluation of limN,,~"(s) for 0 < Res c 1; we 
subsequently relate lim,,O+ IimN,, UN(S)  to limN,, ~"(0).  following the procedures 
used in A and B, define 

8 N e )  = UN(s) - U N - l ( S )  

an elementary calculation then shows that 

C?N(S) = - 2 ((an2+ 2bnN + C N ' ) - ~  + (UN' + 2bNn + cn2)-') 3 n=:N 

where 

The double integrals in (10) may be transformed by the substitutions x = ( N  f l j 2 ) X  and 
y = ( N  i 1/2)Y as appropriate, and the resulting integrals over the unit square converted 
to polar coordinates (r. e). The radial integration can be carried out, and the substitution 
t = tan 0 then shows that 

where 
1 

C(s) = ((a + 2bt + ct2)-" + (at2 + 2bt + c)-,') dt. '  (12) 

Observe that, whilst for fixed N the integrals in (10) are convergent only for 0 4 Res < 1, 
C(s) is an everywhere analytic function of s. 

for large N ;  applying the Euler-Maclaurin expansion to the 
summation in (9) (using a suitable computer algebra program written in MAPLE). combined 
with an asymptotic expansion of ( l l ) ,  shows that for 0 < Res < 1 

s_, 
We next estimate 

(13) 
1 

8N($)  - [(l - ~ s ) C ( S )  - Z((U + 2b + c)-" + (U - 2b + c)- ' ) ]  + W N ( S )  6 ~ 2 ~ 3 . 1  

where WN(s) = O(N-"-') as N + CO. Hence, 

U,(.) = 
P 

S,v(s) + uo(s) = i{(l - 2s)C(s)  - 2((a + 2b + c)-" + (a - 26 + c)-')] 
N=l  
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and for 0 < Res < 1, 

U(u,  b, c; s) 
1 

lim U&) = -[(1 - 2s)C(s) - 2((u + 2b + c)" + (U - 2b + c)-')} 
P+- 6 

x<(zr  + 1) + uo(s) + W(s)  (15) 
where W ( s )  is an analytic function of s and, from (5) U&) is found as 

The existence of the lattice limit U(u,  b, c; s) has now been established for 0 < Res < 1. 
Further, arguments identical to those in A and B show that the value of U @ ,  6,  c; s) in (15) 
is found for 0 < Res < 1 as 

1 
U(U,  b, C; S )  = - (S(U, 6 ,  C; S )  + 1) (17) 

S 

where the function S(u, b, c; s) is defined for Res > 1 by the convergent double sum 

and for 0 < Res  < 1 by the appropriate analytic continuation of (18). 

elementary but somewhat lengthy calculation shows that 

U ( s )  = i s  ((2s + 1) - 8 - 

We next examine lim,,w U(s) ,  where for brevity we omit the arguments (U, b, c). An 

I 
(In@ + 2bt + ct2) + In(utz + 2bf + c))df I L1 

+2(ln(u + 26 + c )  + ln(u - 2b + c) + O(s) +U&) + W ( s )  

as s --f 0 + . (19) 
From (16), lim,y,a+uo(s) = or, say, exists and is finite: thus using the result that 
lim.7,w s <(2s + 1) = f ,  it follows that the double limit 

U(O+) e lim U @ )  = lim lim up(s)  

1 

S-O+ s+a+ p-m 
I 

= - 3 - & (In@ + 2bt + ct2) + ln(uf2 + 2bt + c)) dt 

(20) 
1, 

+:(In@ + 26 + c) +In@ - 2b + c))  + W(0) + or. 
In order to calculate the double limit of (20) in the reverse order, we return to (12) and (13) 
from which it is immediately apparent that &(O) = WN(O). Thus 

m 
U ( O )  = lim lim u,,(s) = w,(o) +u0(0) 

p=1 p-m.r+a+ 

= W(0)  +or. (21) 
The required discontinuity result is now obtained directly from (20) and (21) as 
U(O+) - U ( 0 )  = lim lim up@) - j & ~ , ~ ~ u , , ( s )  

s-ra+p-m 
I 

- 1 - 1  

+b (In@ + 2b + c) + In@ - 2b + c)) . 
(In@ + 2bf + ct') + In(atz + 2bt + c)) dt Idl 
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Writing AU = AU(a, b, c) for the discontinuity defined by (22), the integration can be 
effected with the result that 

where D = w. In the special case a = c = 1, b = 0, (23) reduces to -n/6, which 
coincidentally is the value of the discontinuity in the threedimensional Coulomb potential 
case! 

3. Some numerid results 

Consider first the evaluation for O ' c  Res < 1 of U@), which is expressed in (17) in terms 
of the function S(a, b, c; s), defined for Res > 1 by (18). Double sums of the form (18) 
have been extensively studied by, for example, Glasser (1973), Zucker and Robertson (1975, 
1976a. b, 1984). with the object of determining which sums can be expressed as sums of 
products of Dirichlet L-functions. When this is possible, these authors say that the double 
series can be solved. For example, when a = c = 1, b = 0, we have that 

S(l ,O,l:s)  =4t(s)L-&) ( 2 4  
where for Res > 1 

and for Res > 0. 
m 

L - ~ ( s )  = C(-1)n(2n + I)-,', 
I k O  

Thus, for 0 < Res <' I ,  

(2.5) 

wherein the appropriate analytic continuation of C(s) into 0 < Res < 1 must be used. 
The limit of (25) as s -+ 0+, U( l ,O,  1; Ot), can be determined and the discontinuity 
formula (23) used to evaluate U(I,O, 1; O), which from (7) is the physical two-dimensional 
line-charge interaction energy. However, before doing this we set our computations in a 
somewhat wider context and note some definitions and properties of the L-functions. 

1 U(1.0, l :  s) = -(45(S)L4(S) f 1) 
S 

The Dirichlet L-functions L*k(s) are defined by 
m 

~ ( s )  = C xk(n)n-" (26) 
n=1 

where for a positive integer k, xk(n) is a number theoretic character modulo k, with the 
defining properties 

Xk( l )= l  Xk(n)=Xk(n+k) 

xk(m)x&) = x h n )  

xk(n) = 0 

for all m, n 

if ( k ,  n)  # 1. 
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Thus non-zero characters take only the values f l  and the subscript f k  is used in (26) 
accordingly as xk(k - 1 )  = rfl (Zucker and Robertson 1976a). All the series for L+k(s) 
converge for Res z 0 except L I ( s ) ,  the Riemann zeta function, which converges for 
Res > 1. The Dirichlet functions also satisfy the functional equations (Landau 1909) 

L-k(s) = ZSirS-’k-S+; cos(sir/2)L_x(l- s ) r ( l  - s) 
- s ) r ( l -  S) L + k ( S )  = 2 n 

(27) 
(28) 

which can be used for analytic continuation into Res < 0. We also record here a useful 
integral representation for the Dirichlet functions (Zucker and Robertson ‘1976a), namely 
that for Res > 0, 

P s-lk-5+L 1 sin(sn/2)L+k(l . 

Zucker and Robertson (1976a) deduce from (29) a further representation for L*k(s), valid 
for all s: 

where C is a contour in the complex w-plane which starts from +CO, encircles the origin 
once in the counter-clockwise direction and returns to --oo without enclosing any of the 
poles 2xni/k, n = i l ,  f 2 ,  . . . of the integrand. A particularly simple formula for L&(O) 
follows from (30); with s = 0 direct evaluation of the contour integral in terms of the 
residue at the pole w = 0 gives 

d 
= 4  lim -{(s)L-4(s) 

r+O+ ds 

= 4{’(0)L-4(0) + 4F(O)L’,(O). (32) 
It is well known that ((0) = -4  and {‘(O) = -1n(2n)/Z. Further, L-4(0) = 4 follows 
from (31) and it only remains to calculate Li.,(O). In terms of the generalized zeta function 
((3, a) ,  where 

m 1  
n=O (a + n)” 

r e ,  a)  = - Re($) > 1 

L 4 s )  can be expressed as 

(33) 
1 

L-4b) = ,tr(s. 1/41 - 50.3/4)). 

It follows that 

Li4(0) = - ln4({(0,1/4) - <(0,3/4)) + In r(1/4) - In r(3/4) 

= h(r(1/4)/zr(3/4)) (34) 
using the results (Gradshteyn and Ryzhik 1980) 

{(O, a)  = 2 - a  {’(O, a)  = In r (u)  - + 11127. 
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Equations (32) and (34) now provide the closed-form result that 

U ( L 0 ,  1:0+) = - I n 2 ~  -2ln(r(1/4)/2r(3/4)) 

= -2.621065851 82301903650. (35) 
Further, using the discontinuity formula (23), the physical two-dimensional line-charge 
interaction energy is 

U ( 1 , 0 , 1 ; 0 ) = U ( 1 , 0 , 1 ; 0 + ) + ~ X  

= -2.097467076224720 16343. (36) 
An entertaining by-product of this analysis provides the sum in closed form of a very 

slowly convergent series. Suppose that LL4(0) is evaluated by differentiating (28) with 
respect to s and setting s = 0. Then using the value (34) for Lk4(O), we find that 

Now P ( l )  = - y ,  where y is Euler’s constant, L 4 ( I )  = a / 4  and a form for LL4(l) 
follows by differentiating the defining infinite series with respect to s and setting s = 1. 
After some manipulation we obtain the sum 

= 0.192901 31679691242936 (38) 
correct to 20 decimal places. The sum of the series can be estimated numerically by other 
methods: for example, repeated Shanks transformations on the first 20 partial sums produces 
the sum correct to 15 decimal places, but increasing the number of partial sums fails to 
improve on this. 

As a second example involving a solvable sum, consider the case a = 2, b = f .  c = 7. 
According to Zucker and Robertson (1984), for Res > 1 

(39) s(2, 1/21 7; S )  = f(<(s)L-55(s) - LS(s)L-II(s)). 

Thus, for 0 < Res < 1, 

(40) 
1 

2s a(2,  1 / 2 , 7 ; ~ )  = -(<(S)L-s5(s) - L-s(s)L-i~(s) +2)  

and 
U(2,1/2,7: 0+) = lim U(2,  l/2,7; s) 

.$-.Cl+ 

= $(<‘(o)L-ss(o) f <(o)LL55(0) - L;(O)L-II(O) - Ls(O)L!-II(O)). (41) 
The values of Ls(O), Li, (0) and . L S 5 ( O )  follow from (31) as 0, 1 and 4. Further, L;(O) 
is found as In((1 + 4‘3)/2) by differentiating (28) with respect to s and putting s = 0. In 
principle LL5,(0) can be evaluated in closed form as in the previous example by expressing 
L-55(s) in terms of generalized zeta functions and carrying out the differentiation. However, 
the high value of k (= 55) makes this a daunting task, and, a numerical value is generated 
more rapidly by using (27). Thus from (271, 

and the final term can be found from (29) by differentiation with respect to s and numerical 
integration. (The calculation of the character sum and simplification of the integrand are 
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conveniently PerfOrmed using the number-theoretic capabilities of MAPLE; the numerator and 
denominator of the integrand feature polynomials in e-x of degrees 38 and 40 respectively!) 
The final result is that 

U(2,1/2,7;0+) = -1.0410507289968590083 (42) 

to 20 significant figures. The discontinuity formula (23) then gives 

U(2, 1/2,7;0) -0.541933 19536836042620. (43) 

As a final solvable example we mention the case a = 1, b = i, c = 1; in the physical 
linecharge situation this corresponds to the configuration in which the line charges are 
placed at the vertices of an equilateral triangular lattice with unit spacing between the 
lattice points. Here 

S(1, 1/2, 1; S) = 6((s)L_3(s) 

and for 0 < Res < 1 
1 

U(1.1/2.1; S) = -(6((s)L3(s) + 1). 
S 

The computations now follow closely the derivations of (35) and (36), with the results for 
the interaction energy that 

~(1,1/2,1;0+)=-1n2n-31n(r(1/3)/3tr(2/3)) 

= -2.786 075 893 081 966 293.7 (W 
and 

U(1, 1/2. 1;O) -2.2410750279677360235. (45) 

It is possible to generate many other examples using the results of Zucker and Robertson 
(1984). but it is of interest to consider the problem of determining U(a,  b, c;  0+) and 
U@, b, c; 0) when the double sum S(a. b, c; s), Res > I, is not solvable. In the absence 
of a sum in terms of products of Dirichlet series, the analytic continuation technique can no 
longer be used. One approach to the evaluation of U(a,  b, c; s), 0 c Res < 1, is to use the 
Euler-Maclaurin sum formula as outlined in section 2; however, this is not a viable method 
of determining U ( a ,  b, c;  Of) and hence we concentrate on U(a,  b. c;  0). We show how 
to evaluate this to high accuracy by the Euler-Maclaurin method, and U(a,  b, c; Of) then 
follows from the discontinuity formula (23). 

To compute U ( a .  b. c;  0) we return to (9) and consider 

the limiting process produces the sums 

N 

In(an2 + 2bn N + cN2) 
n=-N 

and 
N 

In(uNZ + 2bNn + cnz) 
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both of which can be expanded asymptotically for large N (using MAPLE) by the Euler- 
Maclaurin sum formula. After considerable reduction (including the cancellation of integrals 
arising from (10)) it is found that 

where, for example, 
1 

p3(a,b,c) =--(7a4+ 112b4+lc4+4a3c+4ac3-8a2b2 

(47) Y 2 -8b c - 6c2a2 - 112ab'c). 

The remaining polynomial p-functions are too long to quote, but it has been observed that 
p z ~ + ~ ( a ,  b,~c)  contains (zk + 1)' terms, each of total degree 4k in a, b, c! 

Using (8) and (21), 
U(0)  lim u,,(O) 

0-m 

By choosing j to be sufficiently large, the sum in (48) can be estimated .very accurately 
using (46) and 

j 2 N-2k-l - - 5(2k , + 1) - N-=-'. 
N=j+l N=I 

Further, uj(0) is given by (7), and canying out the integration we find that 

j 

n=l  
- 2 j I n ( a c ) - 8 ~ l n n - 8 ( j + f ) z ~ l n ( j + ~ ) - ( j + ~ ) 2 Q  (49) 

where 

Q = L{2D(atan-l  ac (q) +atan-' (9) +ctan-' (Tj 
+c tan-' (q) j + (bc + 2ca + ab) In(a + 2b + c) 

-(bc - ~ C U  +ab)  In@ - 2b + C) - l a c  . (50) I 
All the elements for the evaluation of U ( 0 )  in (48) are now available. 

As an initial test of the effectiveness~of this approach, U(1.0, 1; 0) and U(2,  1/2,7; 0) 
were re-evaluated. With j = 22, (36) was reproduced to all the 20 decimal places shown, 
and (43) was found correct to 18 decimal places. Thus one has considerable confidence that 
the asymptotic expansion (46) contains sufficient terms (more of course can be computer- 
generated, if necessary). We now give some illustrative results which cannot be found 
from the analytic continuation of a solvable double sum. The parameters used are chosen 
somewhat arbitrarily and no claim is made of any physical significance. 

For a = 1, b = 112, c = & with j = 20 

U(1,1/2,-.6;0) = -1.8746761491915223826 
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U(l,1/2, &; 0+) = -214028054680970557063. 

Fora  = A, b =8, c=~v% with j =30 

U(&, A, a; 0) = -2.030638221 974750 

U(&, &, A; Of) = -2.658 940830267 172. 

Fora  = 1, b = 2, c = 7 0  with j = 2 6  

U(1,2,70;0) =5.220217001 

U(1,2,70; 0+) = 4.831 718 984. 

Fora  = 1.1, b =  1, c =  1 with j =30  

U(l . l , l ,  1; 0) = -1.9187153262167 
U(l.1, 1, 1; 0+) = -2.6668097944838. 

All these results are correct to the last figure shown, but the same accuracy is not 
attainable in every case from the asymptotic expansion (46). 

4. Conclusion 

In this paper we have examined a further example of a latticelimit discontinuity, a 
phenomenon first discussed in A. The calculations of this paper pertain to a two-dimensional 
lattice system of negative line charges set in a jelly of positive line charges. The interaction 
energy of the Iine charge at the origin is calculated directly in the limit of an infinite 
extension of a system of line charges, each producing a logarithmic potential (in fact a 
generalization of this is considered in (ZO)), and also by considering the 'energy' function 
of a suitable infinitely extended system with the logarithmic potential obtained by a limiting 
process applied to this 'energy' function. The results are shown to be different, and the 
magnitude of the consequent discontinuity is calcuIated in a general setting. Thus we have 
found in two dimensions the analogue of results for three dimensions given in B. 

The basic discontinuity result can in fact be extended to d dimensions, d 2 3; although 
the most general case is still to be discussed and the appropriate discontinuity calculated, 
the following result is conjectured. Let 

where each summation is from -N to N and each integration is from -N - 4 to N + 4. 
Then limN+m U N @ )  exists for s = fd  - 1 and for i d  - 1 < Res Id but 

This discontinuity has been verified in the case d = 4. 
Finally should we really be surprised at the existence of these lattice-limit 

discontinuities? It seems that the answer to this question is no since it happens in a simple 
one-dimensional situation! Define YN(S) fors  # 1 by 
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Then for 0 e s e 1, 
1 

lim V N ( S )  = <(s) + - 
N+m 1 - s  

and 

lim lim yN(s) = ~(0) + 1 = 4. 
s+O+ N+m 

However, 

y ~ ( 0 )  =,A' - (A'- 1) = 1 

and 
lim y ~ ( 0 )  = 1. 

N+m 

Thus 

lim lim y ~ ( s )  # lim lim y ~ ( s )  
N+mr+O+ r+O+ N - r m  

giving a discontinuity of magnitude 4. 
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